Games and perfect independent subsets of the generalized Baire space

Dorottya Sziráki

For an uncountable cardinal $\kappa = \kappa^{<\kappa}$, the generalized Baire space ${}^{\kappa}\kappa$ is the space of functions $\kappa \to \kappa$ equipped with the bounded topology. Jouko Väänänen introduced a notion corresponding to perfectness for ${}^{\kappa}\kappa$, based on a game $G_{\kappa}(X)$ of length κ played on subsets $X \subseteq {}^{\kappa}\kappa$. Consider the following dichotomy:

for all subsets $X \subseteq {}^{\kappa}\kappa$, either $|X| \leq \kappa$ or player II has a winning strategy in $G_{\kappa}(X)$ (i.e., there exists $Y \subseteq X$ whose closure \overline{Y} is κ -perfect).

In joint work with Philipp Schlicht, we show that the existence of a weakly compact cardinal $\lambda > \kappa$ implies the consistency of this dichotomy. As a corollary, it also implies the consistency of a κ -perfect set theorem about the possible sizes of \mathcal{R} -independent subsets of any $X \subseteq {}^{\kappa}\kappa$ with respect to collections \mathcal{R} of κ many $\Sigma_2^0(\kappa)$ finitary relations on X. (A subset $Y \subseteq X$ is called \mathcal{R} -independent if for all *n*-ary $R \in \mathcal{R}$ and pairwise distinct $y_1, \ldots, y_n \in Y$ we have $(y_1, \ldots, y_n) \notin R$.) It has been known that the consistency strength of either of the above mentioned dichotomies lies between the existence of an inaccessible cardinal above κ and the existence of a measurable cardinal above κ .

By considering a modification of $G_T(X)$ of the above game, also introduced by Jouko Väänänen, which allow trees T to play a role analogous to that of Cantor-Bendixson ranks for the generalized Baire space $\kappa \kappa$, I also obtain a version of the above κ -perfect set theorem for \mathcal{R} -independent sets which already holds assuming only \Diamond_{κ} or the inaccessibility of κ .